IN-CORE Release

- Latest release: 2.2.1 (Released on May 25, 2021)
- Source code at GitHub
 - https://github.com/IN-CORE
 - Mozilla Public License v2.0 (MPL-2.0)
- Conda packages
 - https://anaconda.org/IN-CORE
- IN-CORE landing page
 - https://incore.ncsa.illinois.edu/
Architecture

Cloud Computing System
(Dockers + Kubernetes)

pyIncore
IN-CORE Web Services
IN-CORE Web Tools
IN-CORE Lab
Containers on Kubernetes

- Container (Docker): A container image is a lightweight, stand-alone, executable package of a piece of software that includes everything needed to run it
- Kubernetes is a container management system
- The technology brings us
 - Automatic scaling corresponding to demands
 - Portability – deployable to different cloud
 - Streamline deployment from development and testing
pyIncore & pyIncore-viz

• Python library (modules) for IN-CORE
• Three components
 • Interact with IN-CORE web services
 • Base classes for analysis and datasets
 • Analyses
• pyIncore-viz
 • Visualization methods and utilities
• How to install
 • conda install –c in-core pyincore
 • conda install –c in-core pyincore-viz
• Documentation is available
 • Jupyter notebooks with example analysis
 • Technical reference documents
Currently Available Analyses

- Bridge damage
- Building damage
- Building functionality
- Building structural loss
- Cumulative building damage
- Electric power facility damage
- Nonstructural building damage
- Tornado Electric Power Network (EPN) damage
- Pipeline damage
- Pipeline damage with repair rate
- Water facility damage
- Capital shocks
- Mean damage
- Monte Carlo failure probability
- Building Portfolio recovery
- Transportation recovery
- Housing unit allocation
- Population dislocation
- Joplin Computable General Equilibrium (CGE)
- Seaside CGE
- Road damage

Three testbeds (Joplin, Seaside, Galveston) are available as Jupyter Notebook
More analyses will be added in near future
pyIncore Resources

• pyIncore
 • GitHub: https://github.com/IN-CORE/pyincore
 • Anaconda: https://anaconda.org/IN-CORE/pyincore
 • General documentation: https://incore.ncsa.illinois.edu/doc/incore/pyincore.html
 • Technical reference documentation: https://incore.ncsa.illinois.edu/doc/pyincore/

• pyIncore-viz
 • More capability will come in future release
 • GitHub: https://github.com/IN-CORE/pyincore-viz
 • Anaconda: https://anaconda.org/IN-CORE/pyincore-viz
IN-CORE Web Services

- RESTful Web Service Technology
- Database: MongoDB
- Authentication service
- Data service
 - Storing/managing datasets
- Hazard service
 - Storing hazard definitions
 - Getting hazard value by location
 - Earthquake
 - Tsunami
 - Tornado
 - Hurricane wind field
- DFR3 service
 - Storing/managing fragility curve sets, damage functions, repair, recovery, restoration
 - Matching inventory to fragility curve set
- Geospatial Viz service
 - Generating geospatial map/layer images
- Semantic service
 - Storing/managing definition of datasets
 - Coming to next release
- Space service
 - Creating content spaces
 - Access control
IN-CORE Web Services

• How to use IN-CORE Web Services
 • Need to have a user account managed by NCSA identity management system
 • For authentication
 • For authorization (access control)
 • Various ways
 • RESTful web service clients
 • Web browser
 • pyIncore
 • IN-CORE Web Tools (browsing only)
 • Technical reference documentation is available
IN-CORE Web Services Resources

• GitHub:
 • https://github.com/IN-CORE/incore-services

• Technical reference documentation:
 • https://incore.ncsa.illinois.edu/doc/api/
IN-CORE Web Tools

• Lightweight web applications for IN-CORE Web Services
• Allows users to browse, search, and preview data from the service
• Data browser
 • Client to data service
• Fragility browser
 • Client to DFR3 service
 • Currently it shows fragilities
• Hazard browser
 • Client to hazard service
• Login with your account credential to access tools at
 • https://incore.ncsa.Illinois.edu
IN-CORE Web Tools Resources

• Access at
 • https://incore.ncsa.illinois.edu

• GitHub:
 • https://github.com/IN-CORE/incore-ui

• General documentation:
 • https://incore.ncsa.illinois.edu/doc/incore/webtools.html
IN-CORE Lab

• Customized JupyterLab
• Integrated environments for developing algorithms
 • Menu items to access documentations, IN-CORE Web Tools
 • Authentication (single-sign-on)
• Two ways to use IN-CORE Lab
 • Locally (a docker image will be available)
 • Online (JupyterHub at NCSA)
• Online version:
 • pyIncore is installed with all dependent libraries
 • Includes popular python libraries such as Pandas, GeoPandas, Matplotlib, etc.
 • Account and allocation policy are under development for public access
Support

• Email: incore-dev@lists.Illinois.edu
• Documentation: tutorials, tips, and FAQ
• Slack channel will be available soon
<table>
<thead>
<tr>
<th>Mountain Time</th>
<th>AGENDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Join Zoom Meeting:</td>
</tr>
<tr>
<td></td>
<td>https://zoom.us/j/95020363783?pwd=aUFFYU5FNmxVUGdwM3F0clVuTGlyUT09</td>
</tr>
<tr>
<td></td>
<td>Meeting ID: 950 2036 3783</td>
</tr>
<tr>
<td></td>
<td>Passcode: 451704</td>
</tr>
<tr>
<td>11:00 – 11:35AM</td>
<td>Session 1: Overview of IN-CORE & User Workshop Objectives</td>
</tr>
<tr>
<td></td>
<td>• Welcome - John van de Lindt (5 min)</td>
</tr>
<tr>
<td></td>
<td>• Scientific overview of IN-CORE - John van de Lindt (10 min)</td>
</tr>
<tr>
<td></td>
<td>• Platform overview - Jong Lee (15 min)</td>
</tr>
<tr>
<td></td>
<td>• Workshop Objectives - Jong Lee (5 min)</td>
</tr>
<tr>
<td>11:35 – 11:50AM</td>
<td>BREAK and PREP</td>
</tr>
<tr>
<td></td>
<td>• Prepare their training environments (logging in and uploading files to incore-lab etc.)</td>
</tr>
<tr>
<td>11:50 AM – 12:50 PM</td>
<td>Session 2: Hazard (Earthquake, Tornado)</td>
</tr>
<tr>
<td></td>
<td>• Basics of IN-CORE modules (5 min)</td>
</tr>
<tr>
<td></td>
<td>• Tornado (15 min)</td>
</tr>
<tr>
<td></td>
<td>• Earthquake (15 min)</td>
</tr>
<tr>
<td></td>
<td>• Hands-on exe - assignments (20 min)</td>
</tr>
<tr>
<td></td>
<td>• Review answers (5 min)</td>
</tr>
<tr>
<td>12:50 – 12:55PM</td>
<td>BREAK</td>
</tr>
<tr>
<td>Time</td>
<td>Session 3: Damage Analysis (Buildings and EPF)</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>12:55 – 1:55PM</td>
<td>- Fragility curve and Mapping (just presentation) - concept (5 min)</td>
</tr>
<tr>
<td></td>
<td>- Inventory data (10 min)</td>
</tr>
<tr>
<td></td>
<td>- Building damage analysis (10 min)</td>
</tr>
<tr>
<td></td>
<td>- EPF damage analysis (5 min)</td>
</tr>
<tr>
<td></td>
<td>- Hands-on exercise (25 min)</td>
</tr>
<tr>
<td></td>
<td>- Review answers (5 min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 4: Visualization of Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:05 – 2:45PM</td>
<td>- Joining datasets (5 min)</td>
</tr>
<tr>
<td></td>
<td>- Pyincore-viz (10 min)</td>
</tr>
<tr>
<td></td>
<td>- Pandas (5 min)</td>
</tr>
<tr>
<td></td>
<td>- Hands-on exe (15 min)</td>
</tr>
<tr>
<td></td>
<td>- Review answers (5 min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 5: Use Case - How to do research with IN-CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:45 – 3:25PM</td>
<td>- Yousef Darestani - (15-minute presentation, 5 min Q&A)</td>
</tr>
<tr>
<td></td>
<td>- Dylan Sanderson - (15-minute presentation, 5 min Q&A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>CLOSING and NEXT USER WORKSHOP</th>
</tr>
</thead>
</table>
Preparing Session Materials

• At https://incore.ncsa.Illinois.edu, Login

• After login, click on “IN-CORE lab”

• Click on “Terminal”

 - Type the following command to download the file
    ```
    ```

 - Type the following command to unzip the file
    ```
    unzip workshop.zip
    ```